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Abstract

The use of experimental design for optimal sensitivity analysis was proposed in the 2003
CCG report. A methodology was developed to determine a design matrix of realizations that
should be processed through to a transfer function such as flow simulation or engineering
design. This presents an efficient means of performing sensitivity analysis with a minimum
of realizations. The methodology consisted of minimization of an objective function that
characterizes the difference between reference and observed first and second order sensitivity
terms. Flexibility in the algorithm permitted consideration of any number of input variables,
response variables and case values.

This paper presents the latest advances in determining this experimental design matrix
for optimal sensitivity analysis. Considerations in the recent work include (1) maximization
of entropy as an objective, (2) implementation of simulated annealing for optimization,
and (3) extension of the current algorithm to incrementally optimize the design matrix for
additional realizations. Application of this methodology to a synthetic petroleum reservoir
is illustrated.

Introduction

Uncertainty and sensitivity analysis are closely related; the former considers uncertainty
in the response variable as a result of uncertainty in the input variables, while the latter
quantifies the contribution of each variable to the total uncertainty of the response variable.
The use of Monte Carlo simulation (MCS) is ubiquitous in uncertainty assessment; how-
ever, the efficiency of MCS can be improved by applying a stratified sampling approach,
such as Latin Hypercube Sampling (LHS). These methods are simple, straightforward and
commonly used for uncertainty assessment.

Sensitivity analysis has been largely implemented in practice using a vary-one-at-a-
time approach[2]. This involves changing one input variable at a time and comparing the
resultant change in the response to the base case. Although, this approach is straightforward
to assess the sensitivity of the response to each input variable, it presents inefficiencies in
both time and economics.

In the case of multiple input variables that affect the response outcomes, the vary-
one-at-a-time approach is particularly inefficient. The idea proposed was to determine a
“design matrix”, consisting of the set of realizations that should be processed for sensitivity
analysis. In this context, sensitivity results will indicate the input variable(s) that greatly
affects the response variable. The inspiration for this idea was Plackett-Burman’s optimal
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multifactorial design [8] which was theoretically derived for only a limited set of scenarios.
Rather than follow the theoretical approach, the methodology proposed in 2003 was to
numerically derive a design matrix that permitted greater flexibility in the number of input
variables, the possible cases these variables could take, the number of response variables
and the number of realizations that the practitioner wanted to process. While a design
matrix methodology was implemented in the 2003 annual CCG report, a number of issues
were identified for further evaluation. Orthogonality of the matrix was one such issue.
Need definition of orthogonal design. The implication of a non-orthogonal design is
that certain variables would be over-represented with too many cases, while others would
be under-represented with little to no change in the case values that it could take. Thus,
construction of a more orthogonal design should lead to equal representation of all cases
over all variables. This should allow for a fairer assessment of sensitivity.

Another issue was the chosen optimization method. In any complex, non-linear setting,
there usually the lingering question of whether the algorithm converges to a local optimal
objective rather than the global optimal value. The methodology proposed in 2003 consisted
of a rather simple rejection algorithm. Simulated annealing [3] was proposed as a means to
address this issue; this would take more time, yet the complexity of the problem and the
large solution space lends itself to this more sophisticated optimization algorithm.

Another suggestion was to implement this algorithm sequentially, that is, allow for
more realizations to be processed after an initial batch. Suppose the original design matrix
had been processed and additional computational time and resources were available to
enhance the sensitivity analysis by processing another set of realizations. We decide on
the next set of realizations to be processed. This issue of incremental optimization is fairly
straightforward, however optimization in this context should also account for the sensitivity
results corresponding to the original design matrix.

This paper reviews the background presented in 2003. This is followed by the above
considerations and results in development of this latest design matrix methodology. Imple-
mentation considerations are discussed and an application to a synthetic petroleum reservoir
is presented.

Background

Experimental design describes a growing field in statistics that aims to extract the most
information from a set of realizations. The “design” is a set of experiments that reveals
how the input variables affect the response variable. These input variables are also known
as predictor variables. The effect of each predictor variable is referred to as the main effect.
The design may also be set such that the influence of multiple predictors is considered; this
influence is referred to as the interaction of the predictor variables.

A complete factorial design permits consideration of all possible variables for all pos-
sible values that these variables can take. For a small number of predictor variables, this
type of design may be feasible. For most problems, however, a fractional factorial design
is more practical [1, 6] for time and economic constraints. One such fractional factorial
design was proposed by Plackett-Burman (PB) in 1946 [8]. Unlike the approach of indepen-
dently changing one variable at a time, Plackett-Burman’s optimum multifactorial approach
changes multiple variables from their nominal values to their extreme values. Assessing the
effect of these changes on a certain number of possible combinations can determine the main
effect of each predictor variable ([7, 8]. This assumes that all interactions are negligible rel-
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ative to the main effects of the important variables [6, 8].
Determination of a Plackett-Burman design is not trivial; it is based on Group Theory,

specifically on Galois fields [7, 8, 9], which is beyond the scope of this paper. Designs for the
two-factor case (2k, k = 1, . . . , Ni), that is the case where each variable can take only two
possible values, are available for up to 99 realizations, excluding the case for 92 realizations
[4]. Only a few designs exist for select cases of other multiple factors.

A recall of the notation adopted in this paper is described below with references to the
corresponding terminology that would be found in statistical literature.

Recall of Notation

� There are Ni input variables, Vj, j = 1, . . . , Ni, each with a distribution FVj (v),
j = 1, . . . , Ni. This is analogous to factors in experimental design terminology.

� There are Nr response variables, Rk, k = 1, . . . , Nr, each with an associated function,
rk = f(V1, V2, . . . , VNi).

� The base case value for the input variables is denoted by: V 0
j , j = 1, . . . , Ni.

� The base case values for the response variables are denoted by: R0
k, k = 1, . . . , Nr.

� Each input variable, Vj , j = 1, . . . , Ni, can take a number of values, Nc. This can
be the number of discretizations of the cumulative distribution function (cdf), so a
continuous variable can be assigned a discrete number of possible values corresponding
to say, the quartiles (so Nc = 3).

Each case is denoted by an integer, di, i = 1, . . . , Nc with 0 assigned to the base case.
For example, if the quartiles present two other possible sets of values, then the 0.25
quantile will be assigned an integer of -1, and the 0.75 quantile will be assigned an
integer of +1.

This corresponds to what is referred to as levels in experimental design, which are
essentially values that a factor can take.

� There are L realizations considered to optimize for sensitivity analysis. Each real-
ization corresponds to a set of values for each input variable, Vj , j = 1, . . . , Ni. For
example, for Ni = 5, one realization may consist of {-1 0 1 1 -1}. Each realization is
also referred to as a test run.

� Realization values associated to the input and response variables are denoted by a
superscript l, l = 1, . . . , L to represent the realization number. For example, V l

j ,
j = 1, . . . , Ni or Rl

k, k = 1, . . . , Nr.

� The design matrix is denoted by D, which is an L×Ni matrix consisting of integers,
di, i = 1, . . . , Nc, that represent the different Nc cases each input variable can take.
This is often referred to as either a design or a layout; these two terms are used
interchangeably in statistical literature.

D =

⎡
⎢⎢⎣

d1
1 · · · d1

Ni
...

. . .
...

dL
1 · · · dL

Ni

⎤
⎥⎥⎦
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The Objective

The problem is to calculate a design matrix, D, that permits optimal calculation of sen-
sitivity terms with a fixed number of test runs or realizations. The idea is to develop a
general solution that does not require that the response function be known in advance - we
only require the following information: the number of input and response variables, Ni and
Nr, respectively; the distribution of the input variables, fVi(v), i = 1, . . . , Ni; the number
of possible values that these variables can take, Nc; and the number of realizations, L, that
the user would like to process. Note that in the case of continuous variables, Nc can rep-
resent the number of discretizations of the cumulative distribution function (cdf). Specific
knowledge of the response function, and hence distribution, should improve the solution;
however, this is usually unavailable at the start of a project.

The number of possible combinations posed by this problem is huge:
(

NNi
c

L

)
=

NNi
c !

(NNi
c − L)!L!

For example, for 4 input variables, 3 possible values (including the base case), 1 response
variable, and 5 realizations, there are more than 25 million possible sets of 5 realizations
that can be chosen.

The challenge of choosing the best set of L realizations over the combinatorial is daunt-
ing. Simulated annealing presents an ideal optimization algorithm for large, complex and
non-linear problems [3]. This algorithm requires the explicit definition of an objective func-
tion, and employs an acceptance and conditional-rejection scheme to random perturbations
of an initial system. Convergence depends on the solution space and the annealing schedule
that determines the probability of acceptance/rejection in the case of a less favourable per-
turbation. This possibility of allowing less favourable changes to be accepted permits the
chance to reach global optimums rather than accepting local optimums, which can often be
the case with more “greedy” optimization algorithms like the steepest descent methods.

The focus is to assess sensitivity and since derivative terms of the response variable
are commonly used measures of sensitivity, it is natural to expect that these terms be
considered as part of the objective. The first order sensitivity of a response function to
the input variables, ∂rk

∂vi
, i = 1, . . . Ni, provides information on the rate of change of the kth

response variable, Rk, with respect to the ith input variable, Vi.
To account for the shape of the response surface, one may also wish to consider the

second order sensitivity of the response function(s); ∂2rk
∂vi∂vj

, i, j = 1, . . . Ni. This gives infor-
mation about the shape of the surface of the response function; it can also be interpreted
as how fast the slope or gradient is changing. A positive value of ∂2rk

∂vi∂vj
, i, j = 1, . . . Ni

indicates that the response is a minimum (or one can imagine that the response surface
at this point lies within a valley); that is, a change in the ith and jth input variables , Vi

and Vj , will yield a response value that is larger than the current value. A negative value
then indicates a surface that will decrease with a change in the input variables. While this
is useful to determine whether we are at a maximum or minimum response value, it does
ensure that this maximum/minimum is a global maximum/minimum; the employment of
simulated annealing offsets this possibility.

One other consideration is that of an orthogonality of the design, that is, all cases
(or levels) of each input variable (or factor) appears in the same number of realizations
[11]. This property can be interpreted as achieving equal representation for all cases for
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all variables. Table 1 shows an example of an orthogonal design for 7 input variables, 8
realizations and 2 cases for each variable (i.e. Ni = 7, L = 8 and Nc = 2) [8], where -1
represents the base value and +1 represents the extreme value. Note that this orthogonal
design only requires knowing the first row (1,1,1,-1,1,-1,-1); the next realization is obtained
by shifting the case value of variable 1 to variable 2, variable 2 to variable 3, and so on
from the preceding realization. This shifting of case values for the subsequent realizations
is referred as cycling across the realizations.

Realizations
Input Variables

1 2 3 4 5 6 7
1 1 1 1 -1 1 -1 -1
2 -1 1 1 1 -1 1 -1
3 -1 -1 1 1 1 -1 1
4 1 -1 -1 1 1 1 -1
5 -1 1 -1 -1 1 1 1
6 1 -1 1 -1 -1 1 1
7 1 1 -1 1 -1 -1 1
8 -1 -1 -1 -1 -1 -1 -1

Table 1: Example of an orthogonal design for 8 realizations and 7 input variables that can
take 2 case values [8].

While this orthogonality property is quite important and common in a design, Lin and
Chang note that it is not always possible to achieve orthogonality[5]. We can, however,
add this property as an objective to strive for in the optimization. This can be achieved
in two ways: (1) choosing an initial realization and then cycling this set of cases to the
next realization, and (2) explicitly add this into the objective function by maximizing the
entropy of the design matrix. Cycling across realizations is quite straightforward, however,
this only works to achieve orthogonality for a specific number of realizations [11, 5]. For
the general case, we can calculate the entropy of the system and use this to penalize the
objective. A low entropy system corresponds to a design that deviates from an orthogonal
design while an orthogonal design achieves the highest entropy system, thus the objective
will be to maximize entropy. Entropy can be calculated as:

H = −
Ni∑
i=1

Nc∑
j=1

ln[Fi(dj)]Fi(dj) (1)

where Fi(dj) represents the probability of case j for the ith variable, Vi determined over all
the realizations within the design matrix. For instance, the entropy for the design in Table
1 is 4.852. This can be compared to the vary-one-at-a-time approach as represented by the
design in Table 2, which has an entropy of 2.637.

Overall, the choice of the “best” set will be based on optimizing an objective function
that considers all of the above objectives:

O = w1 ·
∥∥∥∥∂rk

∂vi

∗
− ∂rk

∂vi

∥∥∥∥+ w2 ·
∥∥∥∥∥ ∂2rk

∂vi∂vj

∗
− ∂2rk

∂vi∂vj

∥∥∥∥∥+ w3 · [Hmax − H∗] (2)
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Realizations
Input Variables

1 2 3 4 5 6 7
1 1 -1 -1 -1 -1 -1 -1
2 -1 1 -1 -1 -1 -1 -1
3 -1 -1 1 -1 -1 -1 -1
4 -1 -1 -1 1 -1 -1 -1
5 -1 -1 -1 -1 1 -1 -1
6 -1 -1 -1 -1 -1 1 -1
7 -1 -1 -1 -1 -1 -1 1
8 -1 -1 -1 -1 -1 -1 -1

Table 2: Design matrix corresponding to the vary-one-at-a-time approach for 8 realizations
and 7 input variables that can take 2 case values.

where

∂rk
∂vi

= first order sensitivity taken with respect to input variable i, i = 1, . . . Ni
∂2rk

∂vi∂vj
= second order sensitivity with respect to input variables i, j, i = 1, . . . Ni

wα = parameter for optimization, α = 1, . . . , 2
‖·‖ = the norm function
H = entropy of a system as given by Equation 1
* = denotes estimate of the unknown true value

Methodology

The solution to such an optimization problem is not trivial. The response function is
unknown: the first and second order sensitivity coefficients, ∂rk

∂vi
and ∂2rk

∂vi∂vj
, are unknown.

One solution is to treat these sensitivity terms as random variables (RVs). The design
matrix, D, can then be determined for a set of sensitivity terms that are considered to be
possible truths.

The overall methodology can be summarized by the following steps:

1. Draw a large number of values from the RVs for the Ni · (Ni + 1)/2 first and second
order sensitivity terms, ∂rk

∂vi
and ∂2rk

∂vi∂vj
, respectively.

2. Draw an initial design matrix (D) by Monte Carlo simulation (MCS) of the Nc cases
for each input variable. Cycle the realizations wherever possible to try to achieve
orthogonality of the resulting system:⎡

⎢⎢⎣
ΔV 1

1 · · · ΔV 1
Ni

ΔV 1
1 ΔV 1

1 · · · ΔV 1
1 ΔV 1

Ni
...

. . .
...

...
. . .

...
ΔV L

1 · · · ΔV L
Ni

ΔV 1
Ni

ΔV 1
1 · · · ΔV 1

Ni
ΔV 1

Ni

⎤
⎥⎥⎦

3. Calculate the objective function, O, in Equation 2:
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(a) Perform singular value decomposition (SVD) on the design matrix. 1

(b) For each set of values for the sensitivity terms:

i. Calculate the response associated to the L realizations at the base case val-
ues; this can be approximated by a Taylor series expansion expressed up to
the second order terms:

rl
k = r0

k +
Ni∑
i=1

∂rk

∂vi
· ΔV l

i +
1
2

Ni∑
i=1

Ni∑
j=1

∂2rk

∂vi∂vj
· ΔV l

i · ΔV l
j , l = 1, . . . , L

where ΔV l
i = V l

i − V 0
i , i = 1, . . . , Ni.

ii. Solve for estimates of the first and second order sensitivities, ∂r
∂vi

and ∂2r
∂vi∂vj

,
by back substitution of the SVD matrix with its associated vector of response
values. The estimates will not be equal to the truth since the solution will
likely not be unique (for the case of L �= Ni · (Ni + 1)/2).

iii. Calculate the difference between the estimate and the true values for the
sensitivity terms, and calculate the objective function (Equation 2).

4. Perturb this design matrix, D′, by randomly choosing a realization and a variable to
change, and then changing the case value. Recalculate the objective function, O′ (See
Step 3).

5. If O′ < O, then accept the change and set D′=D; otherwise, accept the change with
probability, p = e−(O′−O)/T , where T is the temperature parameter based on the
annealing schedule. Repeat Step 4, until the number of perturbations (set by the user
and controlled by the annealing schedule) is reached.

Following a post-processing of the set of realizations, as determined by the design matrix,
the main effect or impact of each input variable can be calculated. The main effect is the
average effect of that variable on the response value taken over the various values of the
other input variables [10], and can be estimated by [6, 10]:

M(Vi) =
L∑

l=1

di · rl, ∀i = 1, . . . , Ni (3)

where M(·) is the main effect of variable (·). Prior to calculating the main effects, the
realizations specified in the design matrix must be processed to obtain the response value
for each realization, rl, l = 1, . . . , L.

For example, let’s consider the design matrix in Table 1 and say the first variable. Sup-
pose that the response value is NPV and that it is available for each of the eight realizations
(i.e. they have been processed through to the transfer function): $5, $10, $7, $8, $24, $2,−$8,
and −$4 for the eight runs, respectively. The main effect of variable one is calculated as:

1While a matrix solution can be obtained using any number of decomposition methods (such as Gaussian
elimination or Cholesky decomposition), these other methods require certain conditions, such as symmetry of
a square matrix and/or non-redundancy in the system, to be true in order to obtain a solution. Redundancy
in the system is often referred to as singularity of the matrix; this is precisely the case where SVD can be
used. Given the flexibility of the algorithm and although the solution may be non-unique, SVD is robust in
handling under- and over-determined systems.
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M(V1) =
8∑

l=1

d1 · rl

= (1)(5) + (−1)(10) + (−1)(7) + (1)(8) + (−1)(24) + (1)(2) + (1)(−8) + (−1)(−4)
= −30

The units of the response are inconsequential in this type of calculation. As well, it is
the absolute magnitude of the main effect that is important to determine the impact of a
particular variable. Using the above example calculation, one could now calculate the main
effect of the other six variables in the Table 1. The result of such a calculation shows that
variables 5 and 6 tie for the largest main effect and NPV is least affected by variable 3.

Extension to Already Processed Realizations

Now consider the case where the L realizations from the design matrix (obtained using
the above approach) are processed and resources remain to allow processing of additional
realizations, say Ladd realizations. Note that the first set of L realizations have already
been jointly optimized. Now we must consider a design matrix that is effectively L +
Ladd realizations, and not L realizations that we initially optimized. One could consider
running the above methodology and simply change the user specified number of realizations
to L + Ladd; however, this will likely result in an entirely new set of realizations with
little duplication of the initial run). This would effectively negate the professional and
computational effort expended in the original sensitivity work.

We should capitalize on the fact that some preliminary sensitivities have already been
evaluated and use this information to influence the selection of the optimal design for the
Ladd realizations. For this task, we could use the main effects determined in Equation 3 to
weight the selection of variables to change during the design matrix perturbation (in Step
4). Depending on the response variable (e.g. NPV), the units of the main effects can be
rather large. We can simply restandardize the main effect of each variable by:

M(Vi) =
∑L

l=1 di · rl∑Ni
i=1

∑L
l=1 di · rl

, ∀i = 1, . . . , Ni (4)

This type of weighting permits the variables that were initially deemed to be influential
to have a larger probability of being selected to test different cases; conversely, the least im-
portant variables will have a lower probability to be selected for perturbation. Further, the
realizations possibly selected for perturbation are also limited to only the Ladd realizations.

The main caveat with this approach lies in the size of the initial design matrix that is used
to calculate the main effects. If too few realizations are initially processed; the corresponding
main effects may give artificially high influence indicators for certain variables and vice versa.
The new design matrix will reflect the preferential selection of these variables, and lead to
a less optimal design matrix for improved sensitivity results.
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Application

The latest methodology is implemented in Version 2.006 of the prototype program called
dmatrix. Details on the required parameters to execute this program are given in the
Appendix.

Consider the synthetic reservoir example [12] where there are six uncertain input vari-
ables including reservoir area, production index (PI), reservoir surface, horizontal perme-
ability, vertical permeability, and porosity. Consider only the horizontal well type scenario,
and that all six inputs can take one of three possible values: a pessimistic, base and an
optimistic value. The size of this problem is 36 = 729 possible combinations; however, there
is only time to process say 7 realizations through to flow simulation. The following table
shows the resulting design matrix based on the proposed methodology:

Realization
Variables

Area PI Surface VPerm HPerm Porosity
1 0 0 0 0 0 0
2 0 -1 1 -1 0 1
3 1 0 -1 1 -1 0
4 0 1 0 -1 1 -1
5 -1 0 1 0 -1 1
6 1 -1 0 1 0 -1
7 -1 1 -1 0 1 0

Table 3: Design matrix for the case of 6 variables, 3 possible outcomes and 7 realizations.

For this finite example, the flow simulation results of the full combination of scenarios
are available; all scenarios were put through to flow simulation and the net present value
(NPV) was calculated [12]. The true sensitivities are shown in Figure 1. For the design
matrix in Table 3, calculation of the main effects showed the three main variables that
impact NPV are (in descending order) the Reservoir Area, vertical permeability and the
reservoir surface. An assessment of the main effects based on the full factorial shows the
three main variables are (in descending order) the Reservoir Area, PI and porosity. Table 5
compares the ranking of the six variables based on the main effects, and clearly shows that
we are only able to correctly predict one of the ranked sensitivities (the most important
variable no less).

Using the sensitivity results of the initial 7 realizations, suppose we want to add another
5 realizations to the sensitivity analysis. Application of dmatrix for this case yields the
design matrix shown in Table 4. Running this set of realizations and retrieving the response
values, the main effects of each variable can be calculated. This showed that the NPV was
most sensitive to the reservoir area (variable 1), followed by the horizontal permeability, top
surface alteration, porosity, vertical permeability and least affected by the production index.
Comparing these results to the reference sensitivities shows that considering an additional
5 realizations permits the correct ranking of another variable (see Table 5).

As the number of realizations increases towards the full factorial scenario, this rank
ordering should become more stable; however, the number of realizations required to reach
this stability using this design matrix approach will vary depending on the random number
seed and the annealing schedule.
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Figure 1: Spider graph showing sensitivity results from the full factorial analysis of the
synthetic reservoir setting. (Source: Zanon et.al., 2005)

Realization
Variables

Area PI Surface VPerm HPerm Porosity
1 0 0 0 0 0 0
2 0 -1 1 -1 0 1
3 1 0 -1 1 -1 0
4 0 1 0 -1 1 -1
5 -1 0 1 0 -1 1
6 1 -1 0 1 0 -1
7 -1 1 -1 0 1 0
8 -1 -1 1 0 0 1
9 1 -1 -1 1 0 0
10 0 1 -1 -1 1 0
11 0 0 1 -1 -1 1
12 1 0 0 1 -1 -1

Table 4: Design matrix for the case of 6 variables, 3 possible outcomes extended to 12
realizations.
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Variable Reference DMatrix DMatrix Vary One
with L = 7 with L = 12 at a Time

Reservoir Area 1 1 1 1
Porosity 2 4 4 2

Prod. Index 3 6 6 6
Hor. Perm. 4 5 2 5
Vert. Perm 5 2 5 4

Surface 6 3 3 3

Table 5: Comparison of sensitivity ranking of NPV to the input variables. Matches between
the true ranking and the dmatrix results are shown in bold font.

Realization
Variables

Area PI Surface VPerm HPerm Porosity
1 0 0 0 0 0 0
2 -1 0 0 0 0 0
3 1 0 0 0 0 0
4 0 -1 0 0 0 0
5 0 1 0 0 0 0
6 0 0 -1 0 0 0
7 0 0 1 0 0 0
8 0 0 0 -1 0 0
9 0 0 0 1 0 0
10 0 0 0 0 -1 0
11 0 0 0 0 1 0
12 0 0 0 0 0 -1
13 0 0 0 0 0 1

Table 6: Design matrix for the vary-one-at-a-time approach.

The vary-one-at-a-time approach was also examined and produced the rankings shown
in Table 5. In order to determine these rankings, 13 realizations were required (see corre-
sponding matrix in Table 6). Similar to the extended 12 realizations case, only two of the
six rankings are correctly predicted, however, this required processing an extra realization
over the design matrix approach.

Figure 2 shows the instability of this rank ordering if a Monte Carlo drawing of different
sets of realizations is used (rather than the design matrix approach).

Discussion

This algorithm is flexible in terms of the user’s problem specification: number of input and
response variables, number of cases each variable can take, and the number of realizations
desired for processing. As such, the degrees of the freedom imposed on the solution space
for an optimal design matrix is immensely large; the search for a unique solution is a
challenge. The proposed methodology is a stochastic approach to this optimization, the
resulting matrix is not a unique solution; however, the use of simulated annealing presents
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Figure 2: Sensitivity of rank order of the main effects based on MCS.

some promise in determining a more globally optimal design.
The computational time required to execute the program is directly related to the simu-

lated annealing (SA) algorithm employed for optimization. Convergence of the SA algorithm
depends on the annealing schedule; a balance must be struck between computational time
and optimality of the resulting design matrix. A large design matrix will also contribute
to the computational time required. Although some preliminary testing was conducted to
obtain reasonable computational effort and convergence, more testing and analysis are re-
quired for thorough documentation of this issue. Future documentation should also focus
on the convergence of the design matrix rank order sensitivities as a function of the num-
ber of realizations, and a comparison of this rank order to other conventional sensitivity
assessment approaches.

Extension of this algorithm to allow for additional realizations to be computed given
an already optimized design matrix was also implemented. This essentially builds on the
documented approach by allowing for additional test cases to be executed given that the
practitioner has already run the initially specified L realizations. The main effects of the
previously run scenarios are used to determine the significant variables, and thus can be used
to preferentially select certain variables for perturbation. Future work in this area should
consider the response results from the initial run. These results can be used to estimate a
response surface, using kriging or some other interpolation method. The reference sensitivity
terms, that are stochastically attained in the initial run, can now be numerically determined
using this response surface. This should permit a more efficient design.

In both the initial and extension cases, evaluating the main effects shows that the
sensitivity results can be highly variable. Use of the Taylor series expansion in determining
the response values can be refined by using the distribution of response values; however,
this presumes that one is readily available prior to post-processing of simulation results.

Sensitivity analysis remains a challenge - especially given that post-processing for natu-
ral resource management requires time-intensive (flow) simulations. This ultimately leaves
the practitioner with few options but to run only a handful of models through sensitiv-
ity analysis. The proposed design matrix methodology presents a means of selecting the
realizations to be processed and evaluated.
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Appendix

An example parameter file for dmatrix is shown in Figure 3 and the corresponding param-
eters are explained below:

� niv: number of input or predictor variables.

� biv(i), i=1,...,niv: base case values for each predictor variable.

� The next three lines are repeated niv times, once for each predictor variable:

– transfl(i): file with input data for determination of data distribution.

– icol(i), iwt(i): column number for variable i, and corresponding weights.

– tmin(i), tmax(i): trimming limits to filter out variable i.

� nrv: number of response variables.

� brv(i),i=1,. . ., nrv: base case values for each response variable.

� nreal: number of desired realizations for processing.

� ixv(1): random number seed.

� outfl: file for output. This file contains the optimum design matrix.

� sumfl: file with summary information about the convergence of the objective function.

� maxpert, rreport: maximum number of perturbations at a specified temperature;
used to determine a stopping criteria.

� maxnochange: maximum iterations with no change in objective function; used to
determine a stopping criteria.

� iext, ladd: flag to determine if additional realizations are desired (0=no, 1=yes); if
yes, then specify number of additional realizations.

� resfl: file with previously determined design matrix, plus the corresponding response
variable value (this should look like the dmatrix.out file with a results column ap-
pended to it).
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Parameters for DMATRIX
**********************

START OF PARAMETERS:
2 - number of input variables
0.25 3.01 - base case values for input variables
3 - number of outcome cases (excluding base case)
datafile1.out - file with input variable 1
5 3 - column for variable 1 and weight
-1.0e21 1.0e21 - trimming limits for variable 1
datafile1.out - file with input variable 2
5 3 - column for variable 2 and weight
-1.0e21 1.0e21 - trimming limits for variable 2
1 - number of response variables
5.0 - base case values for response variables
5 - number of realizations
69069 - random number seed
dmatrix.out - output file for design matrix
dmatrix.sum - summary file to report objective functions

SIMULATED ANNEALING PARAMETERS:
10 0.1 - maximum number of perturbations, reporting
100 - maximum perturbations without a change

EXTEND TO MORE REALIZATIONS:
0 5 - more realizations(0=no,1=yes), no. realizations to add
results.out - file with prev. dmatrix and extra column for response

Figure 3: Parameters for dmatrix.
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